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SYMMETRIC FLOW OVER THIN GENERALIZED AXISYMMETRIC
CONICAL BODIES IN A SUPERSONIC INVISCID GAS STREAM

M. I. Gurevich and V. A. Smirnov

ABSTRACT. Generalized axisymmetric flow over cones is ana-
lyzed. The analysis is limited to the case where the body
is within the Mach cone. An asymptotic equation for the
meridianal cross section is presented for a sharp tipped
cone. The solution of this equation is obtained numeric-

ally, and the resulting plots of § versus a are shown graph-
ically.

The linearized theory of supersonic conical flows of an inviscid gas can be
applied to problems other than those of gas dynamics. D. D. Ivlev [1] showed
that the resulting linearized theory of supersonic gas flows can be transferred
directly to the theory of penetration of sharp tipped bodies into an ideal
plastic medium.

The theory of linearized conical flows of A. Buzeman [2] was generalized by
M. D. Khaskind and S. V. Falkovich [3]. As we know, conical flows are char-
acterized by the fact that the velocity along the rays exiting from a certain
flow pole are constant. In generalized conical flows, these velocities are
proportional to whole, positive powers of the distance from the pole, i.e. from
the tip of a sharp tipped body around which the flow is occurring. Generalized
conical flows also include flows produced by superimposition of velocity fields
of these flows. In this work, we will analyze a particular case of axisym-
metrical generalized conical flows. For this purpose, we will use the general

solution of the problem of generalized conical flows in the form presented in
[4, 5].

We will present the results from {4] required for the following without
proof.

Initial Equations

Suppose the main, unperturbed flow approaching the generalized conical body
with tip at zero has velocity W at infinity, directed along the z axis
(Figure 1). In the following, we will analyze only the case when the body in
the flow is located completely within the Mach cone with its peak corresponding
to the tip of the body. The velocity projections in the gas flow disturbed by
the body will be represented as u, v and w. These projections are considered
small in comparison with W. The projections of the total flow velocities will
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beu, v, W + w,

Figure 1 shows the plane z = 1, passing through point 0. This plane
contains the 0¢ and On axes, parallel to the 01x,01y axes. We can look upon £
and n as dimensionless coordinates £ = x/z, n = y/z. The cross sections of the

body and of the Mach cone in plane & ,n are circles.

Let us introduce the new, independent variables using the formulas:

X==—pr =" ?:——rQ—r; Azéﬁ;rdhé.; W

Here A = (M2 - 1)_1/2, M is the Mach number, o is the angle of the radius
of the vector in plane £,7 with the { axis. By excluding ¢ and & from the
equations of (1), we can find

r2:=A222—~xf-—}ﬁ. (2)

The potential of the velocities of the perturbed flow ® should satisfy the
equation
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The solution of this equation has
the form
W=D+ D, (3)

n
where @n =r ¢n(6,0) and the ¢n func-

tions are satisfied by the equation

0% ‘?&J_ d* o, _n (1 4-n) " '= 0. (4)
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Figure 1

In [4], the following solution is
presented for (4), dependent on the
arbitrary harmonic function F(0,6):
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Axisymmetrical Flow Case

In the case of axisymmetrical flow, function ¢n does not depend on 0.

Equation (4) in this case takes on the form

Con 0018 o 0 (6)

dos sh*d

The harmonic function, which is independent of o, has the form F(§) =

= C6 + Cl' Let us prove that it is correct to assume C1 = 0. For this

purpose, let us study the behavior of the solution as we approach the Mach cone,
determined by the equation

r2=A222_x2_y2=0_ . ) (7)

It follows from (1) that as we approach the Mach cone, 8 » 0, the order of

the approach of 8 and r to O being identical. Substituting F = C6 + C1 in (5),

it is not difficult to see that as 6 » 0
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From this it follows that
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But on the surface of the Mach cone, in the case when the body is located
entirely within the Mach cone, the velocity potential of the perturbed flow must

be equal to zero. Therefore, it is necessary that C1 = 0 and, finally,

n-j- /1 9 \" ’ |
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Form of Tip of Body

Suppose R =+vxZ + yZ and t = R/Az. In the area of the tip 0, the value of
t is low. It follows from (1) that
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Further, with low t, we can produce the following asymptotic formulas from
(2) and (9):

R

r=Az;, 8§xIn 54 = In (1/2)%.;_3;#?3 =dl/i.

Now equation (8) can be written in the form
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From this it is easy to see that where t > 0
Pn =0(Int) =~ In{-const. (10)

Furthermore,
2 R |
Q)n = @, == 0] [(AZ)' in E] ' \
from whichl

B - =
-.Q;_';al\’ R

Considering that W + 6®n/az ~ W, the differential equation for the flow
lines has the form

T Tn those instances when only the order of magnitude is important, the same
symbol const will be used for various constants.



Substituting a¢n/aR from (11) into this equation, we can find

d "
-jg ==-%f-consth (12)

Since the tip of the body is at point Z = 0,R = z, it is easy to produce
the asymptotic equation for the meridianal cross section of the body from (12):

n-k-1

R =2 7 .const. (13)

Case n = 1 corresponds to the well known flow about a cone [2]. Below, as
an example, we will analyze in detail the case n = 2.

Particular Case n = 2
In the particular case n = 2, by differentiating in (8), we can easily
produce

¢y == CY==3cth 6 — 8 + 35 cth? 5.

Substituting here the value of 6§ and coth é from (9), and multipf&ing ¢2 by

2 .
r , we can find
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(16)
The differential equation for the flow lines will have the form

dR =~ C [2Azr:
dz TV—(

T-{—Rlnj————-z—,-r). (17)

2--r

The body around which the flow occurs will correspond to the solution of
the equation satisfying the initial condition

[e 12=0.:O. (18)

If we introduce the new variables:

C c :
a=-2z b= R, (19)

then equation (17) is reduced to an equation not containing the parameters in
explicit form:
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If = f(a) is the solution of equation (20), satisfying the condition
Bla =0 ° 0, the equation for the meridianal section of the body has the form
AW czy !
=2 (). (21)

It is easy to see that the asymptotic solution of equation (20) satisfying the
initial condition in the area of the tip of the body has the form

A
!ﬁ =V
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which is in agreement with (13). Equation (20) was integrated by the Runge-
Kutta numerical method. The initial values of quantity 8 were determined from
asymptotic formula (22). The results of the calculation are presented in the
table below. Figure 2 shows the curve constructed from the results of calcula-
tion for low values of a@. In order to investigate the behavior of the integral
curve over the broadest possible interval during numerical integration, we
selected a large step (X = 0.1). The results are shown on Figure 3. The

equation for the Mach cone (7) in coordinates @ and B becomes the following:

o? - BZ (straight dotted line on Figures 2 and 3). As @ > =, j.e. as z > =, the

meridianal cross section of the body is made parallel to the generatrix of the
Mach cone in the same meridianal plane. However, the angle between the gener-
atrix of the Mach cone and the z axis is arbitrary, whereas the angle of the
body surface with the z axis, in correspondence with the main requirements of
the linearized theory, must be small. Therefore, the numerical results produced
have physical meaning only for the bow portion of the body as long as it can be
considered thin. Since the flow is supersonic, the stern portion of the body
can be cut off without changing the flow about the bow portion. Pressure p is
determined by the linearized Bernoulli integral [see (16)]

” \ oy, Az -
p = — pW = — pWC tr4Az -+ 22A%In A{T:J] , (23)

where p is the gas density. From this, the drag of the bow portion of the body
can be calculated using the formula

., 8rp At 71
Xoo= = F(w),

(24)

where

Figure 4 shows the dependence F(a), which is constructed from the data
shown in the table.
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